Einer der größten Fehler der akademischen Naturwissenschaft des letzten Jahrhunderts ist, Entwicklungsprozesse als zeit-invariant zu betrachten. Das betrifft insbesondere die Astrophysik und die Geologie. So versucht man vom heutigen Zustand der Welt auf die Vergangenheit zu schließen.
Entwicklungsprozesse hängen jedoch stets wenigstens zu einem Teil vom Zustand der Vergangenheit ab und nicht der Zukunft.
Jeder Ingenieur weiß, das zur Herstellung eines Produktes mehrere Technologien möglich sind. Dem Endprodukt kann man nicht ansehen, auf welche Weise es entstanden ist.
Nehmen wir ein simples Beispiel. Eine Linse wurde in der Vergangenheit geschliffen,
das machte sie teuer, weil dieser Prozess sehr langwierig ist. Heute presst man Linsen.
Das geht bedeutend schneller. Das Endergebnis ist das gleiche.
Doch wie will man das dann anhand des Ergebnisses unterscheiden?
Auf die Naturwissenschaft übertragen lautet die Frage dann: Ist unsere heutige Welt
aus einem Jahrmillionen dauernden langsamen Entwicklungsprozess oder
aus einer Aneinanderreihung von Katastrophen entstanden?
Diese Frage können wir, wenn wir ehrlich sind, nicht beantworten.
Lediglich Hypothesen können wir darüber aufstellen.
Wir wissen weder, wie alt der Kosmos ist noch wissen wir, wie alt unsere Erde ist.
Der Zeitrahmen, in den wir den Entwicklungsprozess hineindenken, und die Hypothesen über den Ablauf werden zu Wahrheiten erklärt. Die Folge ist, dass der Wissensbildungs-prozess zum Stillstand kommt.
Erfreulich ist es da, dass es immer wieder Außenseiter gibt, die den Mut aufbringen,
den heute hochspezialisierten Wissenschaftsbetrieb mit ihren speziellen Hypothesen zu hinterfragen, obwohl sie damit Gefahr laufen, von ihren Zeitgenossen als Spinner und Sonderlinge verachtet zu werden.
Erst in der Zukunft zeigt sich die fruchtbare Wirkung solcher revolutionärer Ideen.
In diesem Kontext steht das Buch von Bernhard Ellmann.
Er polemisiert gegen das evolutionäre Bild der Erdentwicklung und stellt seine katastrophistische Sicht dagegen, die er durchaus überzeugend darzustellen weiß.
Dabei greift er auch auf die Ideen von Immanuel Velikowsky zurück, der mit Einstein in dessen letzten Lebensmonaten über die Welt diskutiert hat.
Velikowskys Grundidee war, dass der Kosmos aus elektrisch geladenem Plasma besteht.
Diese Grundidee hat sich durch die Ergebnisse der Raumfahrttechnologie in vielfacher Weise bestätigt und so rücken die katastrophistischen Hypothesen wieder stärker ins Blickfeld.
Hat die Menschheit wirklich Katastrophen kosmischen Ausmaßes überlebt?
Kann man den alten Quellen trauen?
Vielleicht war die Menschheit schon einmal auf einem hohen Wissensstand und eine kosmische Katastrophe hat alles bis auf wenige Bruchstücke vernichtet.
Die Verwundbarkeit unserer gegenwärtigen Kultur dürfte uns klar werden,
wenn wenn wir uns vorstellen, dass plötzlich weltweit alle Computer durch einen gewaltigen elektromagnetischen Puls, ausgelöst durch eine gewaltige Sonneneruption in Richtung Erde, ausfallen könnten.
Eines der oft diskutierten katastrophalen Ereignisse ist der Zusammenstoß mit einem anderen Himmelskörper. Beispielsweise erklärt so ein Ereignis besser die riesigen Kohleflöze durch gewaltige Flutwellen als das stetige Wachstum von Nährstoffarmen Mooren.
Allerdings bei der Identifizierung solcher Himmelskörper treten Schwierigkeiten auf.
Ellmann erklärt die Schwerkraftanomalie im Indischen Ozean als ein solches Ereignis.
Aus dem unterseeischen Relief liest er eine Kollisionsspur ab und
er formuliert in Kapitel 8.2 drei Eigenschaften, die das kosmische Kollisionsobjekt kennzeichnen sollen:
1. Durchmesser 4000km
2. Die touschierte Seite muss eine andere Form als die unbeschädigte Seite haben.
3. Die Körper muss ein Wärmereservoir haben.
Folgen wir seiner Idee! Die Schramme im indischen Ozean verläuft von Süden nach Norden fast senkrecht zur Eklipse.
Laut Miller 1933 bewegt sich das Sonnensystem in Richtung Südpol der Eklipse.
Der geschrammte Himmelskörper lag praktisch der Erde in Richtung Süden direkt im Weg.
Nehmen wir an, dass bei der Kollision die Erde in ihrer Bahn nicht sehr gestört wurde,
aber ihre Rotationsachse kippte. Dann würde die Sonne von der Erde aus gesehen im Westen aufgehen. so wie es die alten ägyptischen Quellen berichten. Allerdings hätte der kollidierende Himmelskörper seine Bahn nach dem Zusammenstoß mit der Erde gewaltig geändert.
Je nachdem, ob das Ereignis auf der Tages- oder Nachtseite passiert ist, gäbe es zwei verschiedene Bahnverläufe des die Erde stoßenden Objektes, entweder zur Sonne hin
oder von der Sonne weg. Im ersten Fall hätte man keine Chance, den Himmelskörper je zu identifizieren, denn er wäre von der Sonne eingefangen worden.
Im zweiten Fall jedoch könnte einer der großen Planeten den Himmelskörper eingefangen haben. Reguläre Monde liegen nahezu in der Ebene der Eklipse. Monde, die nicht dieser Regel folgen, werden als irreguläre Monde bezeichnet.
Diese haben stark elliptische Bahnen oder einen großen Neigungswinkel zur Eklipse.
Ein solcher irregulärer Mond könnte der gesuchte Himmelskörper sein.
Tatsächlich hat man eine Reihe dieser irregulären Monde als Begleiter der großen Planeten entdeckt. Allerdings gehört der von Ellman vorgeschlagene Saturnmond Titan nicht zu den irregulären Monden.
Es gibt aber einen irregulären Mond, der zu Neptun gehört, mit Namen Triton,
der ein eventueller Kandidat mit den entsprechenden Abmessungen sein könnte,
womit seine geologischen Überlegungen vorerst gerettet wären.
Ellmann als Chemiker widerspricht den Vorstellungen der Geologen von der langsamen Verwitterung der silikatischen Gesteinen zu Sediment-Lagerstätten. Das Silikatgrundgerüst ist in Wasser nicht von Säuren angreifbar, was aber Geologen behaupten. Größere Mengen von Sanden bilden sich explosiv durch das Zusammenwirkten von Wasser und Magma.
Erdöle und Erdgase bilden sich durch Druckhydrierung von CO2, wie man im Labor in geschlossenen Reaktionsräumen nachbilden konnte.
Ellmann vergleicht Sandstein und Beton und kommt zu dem Schluss, dass es sich chemisch um den selben Stoff handelt. Wir kennen die Abbindezeiten von Beton und müssen daher zugeben, dass diese in geologischem Maßstab sofort erfolgen. Fossilierte Weichteile würden sich nicht erhalten können, wenn der Prozess in geologischen Zeiten ablaufen würde.
Nach Ellmanns Auffassung sind alle Gebirge als Folge des Einschlags des diskutierten Himmelskörpers entstanden, der eine große Druckwelle im Inneren der Erde erzeugt und die Lithosphäre aufgesprengt hat. Damit erklären sich auch die gewaltigen Moränenlandschaften unter denen Braunkohle lagert.
Gewaltige Flutwellen können solche Strukturen formen, ohne dass man dazu Eiszeiten benötigt.
Vor dem Zusammenstoß der Erde mit dem Himmelskörper stand die Erdachse laut Ellmann senkrecht. Die Meere bestanden aus Süßwasser. Es gab keine Jahreszeiten und die Erde war schwül-warm, da Wasserdampf das stärkste Treibhausgas ist. Salzwasser hat nicht so einen hohen Dampfdruck wie Süßwasser.
Ellmann widerspricht der Subduktionstheorie. Tsunami-wellen können nicht durch Unterschieben einer Kontinentalplatte unter die andere entstehen. Es muss sich der Meeresboden über große Entfernungen schlagartig um einige Meter heben, was nur durch sich entladenden Druck unter der Lithosphäre zustande kommt. Plattentektoniker können nicht erklären, woher die Kräfte für die Magmafüsse entlang der Unterseite der Lithosphäre kommen.
Die Verdrängung des Katastrophismus hin zu einem Aktualismus, einem Denken in Zeitabläufen von Millionen Jahren, in der Geologie des 19. Jahrhunderts, sieht Ellmann als eine psychische Schutzreaktion, bei der der Mensch die Augen vor den Gefahren der gigantischen Kräften des Kosmos verschließen will, weil Geologie das Leben der Menschen so unmittelbar betrifft.
In dem Zeitdenken und der Plattentektonik sieht er die Hemmnisse für den Fortschritt der Geologie. Er fordert ein Umdenken in der Geologie.
Das Buch ist eine Ergänzung zur Plasmakosmologie und liefert eine Menge Anregungen, neu über unsere Welt nachzudenken.
Your point of view caught my eye and was very interesting. Thanks. I have a question for you.